Ученые из Лаборатории интеллектуальной космической робототехники Сколтеха предложили новый метод анализа поведения покупателей c помощью робота, проводящего автономную инвентаризацию, используя радиочастотные метки.
Результаты исследования опубликованы в материалах робототехнической конференции (ICARCV).
Автономные роботизированные системы все больше интегрируются в повседневную жизнь человека. Одна из наиболее трудных задач для таких систем – проведение инвентаризации в быстро меняющихся условиях.
Ученые под руководством профессора Космического центра Сколтеха (Лаборатория интеллектуальной космической робототехники) Дмитрия Тетерюкова предложили метод, который позволяет строить модели, отражающие зависимость спроса от местоположения товаров и определять области откуда товары с наименьшей вероятностью купят, а также находить потерянные и перемещенные предметы. Робот следит за покупателями, определяет наиболее привлекательные для них расположения товаров и прогнозируют спрос. Это дает продавцу информацию о каждой позиции в магазине, которую можно использовать при размещении товаров. Для магазинов это хороший способ повысить продажи и прибыль. Робот, оборудованный массивом RFID антенн, считывает данные с радиочастотных меток, которыми оснащены товары и передает результат инвентаризации в систему управления складом (WMS).
«Существующие решения не применимы к реальным ситуациям в розничной торговле, что может привести к неожиданной потере продаж. Предлагаемое нами решение дает исчерпывающих информацию о распределении спроса в торговом зале с помощью мобильного робота для автономной инвентаризации магазинов, в которых товары промаркированы RFID метками. Наше исследование отличается тем, что мы оперируем большим объемом исходных данных, собранных в реальной среде в период продолжительностью более десяти месяцев», – рассказывает один из разработчиков из Космического центра Сколтеха Александр Петровский.
«В Сколтехе мы разработали автономный робот Michelle с поддержкой технологии RFID для сети магазинов Decathlon. Робот позволяет значительно снизить число ошибок считывания RFID меток, обусловленных человеческим фактором, а также ускорить и удешевить процесс инвентаризации. Мы решили воспользоваться большими данными, собранными за длительный период эксплуатации робота в магазине, в частности, для оценки изменений в плотности RFID меток по всему торговому залу. Сначала мы предложили вероятностную модель оценки местоположения меток с точностью до 0,3 метра, а затем построили карту динамики плотности меток, на которой четко обозначены зоны в торговом зале, где покупатели приобретают наибольшее и наименьшее количества товаров. Полученные результаты очень важны для ритейлеров с точки зрения поиска более удачных схем размещения товаров с целью максимизации прибыли от продаж и прогнозирования динамики сезонного спроса», − рассказывает профессор Сколтеха Дмитрий Тетерюков.
Разработанный подход применим к любому торговому залу, где товары промаркированы RFID метками.
Комментарии
(0) Добавить комментарий