Консалтинговая группа "Текарт" - центр компетенции "Робототехника".

Подробнее...
Основное меню
Категории новостей
Логотип

Карты оживают: создан новый метод 4D-моделирования зданий при помощи машинного обучения

Группа ученых из Сколтеха и исследовательского института FBK (Италия) представили методику, позволяющую создавать 4D-модели зданий с помощью исторических карт и машинного обучения.

Используя новую методику, можно не только предсказывать высоту зданий на основе их геометрических параметров, данных о районе и категории здания, но и получать более полную информацию о различных явлениях и изменениях в городской среде, сыгравших важную роль в формировании современного облика наших городов. Результаты исследования опубликованы в журнале MDPI Applied Sciences.

Наиболее важным источником информации для анализа изменений в городской застройке являются исторические карты. Однако, на таких картах трехмерный мир представлен в двухмерном пространстве, которое лишь отражает главные особенности городской среды, не учитывая пространственную информацию и, в частности, данные о высоте зданий. В приложениях для 3D/4D-моделирования городской среды на основе исторических данных отсутствие информации о высоте зданий – главная проблема, не позволяющая добиться требуемой точности в представлении, анализе, визуализации и моделировании объемного пространства.

Ученые из Сколтеха и отдела 3DOM института FBK в Тренто исследовали возможности решений на основе машинного обучения по определению высоты зданий при помощи исторических карт местности.

Разработанный метод протестировали на четырех исторических картах Тренто (1851, 1887, 1908 и 1936 гг.) и Болоньи (1884 и 1945 гг.), на которых отражены наиболее существенные изменения в городской застройке за последние столетия, и восстановили динамические 4D-версии этих городов.

«Разработанная нами методика обучения и предсказания, протестированная на исторических данных, оказалась эффективной и перспективной для целого ряда других приложений. Пока для предсказания используется небольшое число характерных признаков, но в ближайшее время мы планируем обобщить методику для решения реальных задач в условиях отсутствия данных о высотах рельефа местности. Разработанные при помощи этой методики модели позволят восполнить нехватку геопространственных данных при исследовании исторических и труднодоступных ландшафтов», – рассказывает аспирант Сколтеха и FBK в Тренто Эмре Оздемир.

Источник изображений: Farella, E.M.; Özdemir, E.; Remondino, F. 4D Building Reconstruction with Machine Learning and Historical Maps. Appl. Sci. 2021, 11, 1445.

Теги: Сколтех

Комментарии

(0) Добавить комментарий

Ищите команду разработчиков? Не можете найти робота для своих нужд? Пишите нам!

Для обратной связи укажите ваш E-mail, он будет доступен только администратору. Так вы сможете оперативно узнать, когда ответ на ваш вопрос будет опубликован



Новые комментарии

ИИ Arago теперь может потягаться с людьми в сложных играх-стратегиях (+видео)
вован1
17.04.2021
11:00:24
Жесть. Так вот кто нас там в ЛонгТурне всё-время обыгрывает!
НАУРР посчитает количество роботов в России
Aviagr
09.04.2021
09:10:30
В Анкете слишком много вопросов о продажах. Я бы предложил разбить на две анкеты: уже существующие и перспективные робототехнические системы. По...