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Figure 1: Mini Cheetah dynamically traverses a 23-centimeter gap.2

Abstract: Today’s robotic quadruped systems can robustly walk over a diverse3

range of natural but continuous terrains involving snow, rain, slip, rubble, etc. Lo-4

comotion on discontinuous terrains such as one with gaps or obstacles presents a5

complementary set of challenges. It becomes necessary to plan ahead using visual6

inputs and execute agile behaviors such as jumps to cross gaps. Such dynamic7

motion results in significant motion of onboard camera that introduces a new set8

of challenges for real-time visual processing. The need for agility and the oper-9

ation from vision reinforce the need for robust control. We present a system that10

can, in real-time, process visual observations from an onboard RGBD camera to11

command a quadruped robot to jump over wide gaps. The proposed method brings12

together the flexibility of model-free learning and the robustness of model-based13

control. We evaluate performance both in simulation and in the real world.14

Keywords: Locomotion, Vision, Hierarchical Control15

1 Introduction16

One of the grand challenges in robotics is to construct legged systems that can successfully navigate17

novel and complex landscapes. The Spot robot and the ANYmal robot are impressive in their ability18

to traverse a wide diversity of natural and man-made terrains [1]. During blind locomotion, such19

robots primarily rely on proprioception and robust control schemes to achieve sturdy walking in20

challenging conditions involving snow, thick vegetation, slippery mud, etc. The downside of not21

using visual observations is the inability to execute motions that anticipate the land surface in front22

of the robot. This is especially prohibitive on terrains with significant elevation discontinuities. For23

instance, crossing a wide gap requires the robot to jump, which cannot be initiated without knowing24

where and how wide the gap is. Without vision, even the most robust system would either step in25

the gap and fall or otherwise treat the gap as an obstacle and stop. Additionally, the inability to plan26

results in conservative behavior that is unable to achieve the energy efficiency or the speed that the27

hardware affords.28

Vision-based legged locomotion holds the promise to overcome these challenges, and substantial29

progress has been made in this direction [2, 3, 4, 5, 6, 7, 8, 9]. The state-of-the-art systems can30

traverse uneven terrain, walk across gaps, and climb over stairs. Many of these systems assume31

access to the ground truth height-map of the terrain [2, 3, 5] which is generally not available for32

new terrains encountered by the robot. Several works overcome this limitation by performing online33

construction of a terrain heightmap from depth images [4, 7]. These works perform a rule-based34

search for stable footholds and use model-based controllers to plan safe trajectories. Often, the35

model used in planning makes simplifying assumptions such as fixed body trajectory [7] or restricted36

contact pattern [5]. These assumptions result in conservative and non-agile locomotion.37
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Planning agile behaviors, such as jumps, on discontinuous terrain offers a different and complemen-38

tary challenge to traversing continuous and unstructured terrain. Executing a jump requires planning39

the location of the jump, the force required to lift the body, and dealing with severe under-actuation40

during the flight phase. Prior work has demonstrated standing jumps in simulation [10, 11], on a41

real robot [7], and running jumps in simulation [12, 13, 14, 9, 8]. Prior work on the MIT Chee-42

tah 2 achieved running and jumping over a single obstacle [15]. However, this system was heavily43

hand-engineered: it assumes straight-line motion, uses a specialized control scheme developed for44

four manually segmented phases of the jump, and the vision system was specialized for detecting45

specific obstacles. Further, the robot was constrained to a fixed gait. Consequently, this system is46

specific to jumping over one obstacle type, and substantial engineering effort would be required to47

extend agile locomotion to diverse terrains in the wild.48

Operation in the wild requires a system architecture that can automatically generate a diverse set49

of agile behaviors directly from visual observations. One possibility is to apply deep reinforcement50

learning to predict joint torques directly from visual inputs. Previous work [9, 14, 16] trains lo-51

comotion RL algorithms in simulation, since a simulated environment can be easily randomized,52

requires little human maintenance, and can be conveniently parallelized for large-scale experience53

collection. However, there is a drawback to training in simulation: the agent learns to exploit in-54

accuracies in the simulation to achieve high reward, when such behavior fails to transfer to the real55

system. Some prior work aims to reduce simulator exploitation by encoding locomotion-specific pri-56

ors into the agent’s action space. One such line of work uses a trajectory generation method known57

as PMTG [17], which combined with domain randomization can successfully transfer simulated58

walking behaviors to the real world. However, it is well known that while greater randomization in-59

creases robustness and improves sim-to-real transfer, it also results in more conservative and thereby60

suboptimal policies [18].61

The sim-to-real problem is severely aggravated by requirements of agility and operation from vi-62

sual inputs. This motivates a different style and rigor of controller design that emphasizes transfer63

robustness. As a step towards vision-guided agile locomotion, we present a general framework for64

synthesizing adaptive, agile behaviors with the support of a low-level robust controller. To evaluate65

our proposed system and baselines, we construct a suite of gap-world environments that require a66

quadruped to cross a sequence of randomly placed gaps of varying widths using observations from67

an attached depth camera (see Figure A.1). While this environment is much simpler than “in-the-68

wild”, traversing it successfully requires solving many of the core challenges in vision-guided agile69

locomotion. We use the MIT Mini Cheetah robot [19] as the experimental platform and report results70

both in simulation and the real world.71

We contribute a novel analysis of design choices for integrating flexible model-free learning with72

robust model-based trajectory optimization in the context of visually guided locomotion across dis-73

continuous terrain. The end result is a system that can (a) cross a sequence of wide gaps in real-time74

using depth observations from a body-mounted camera in the real world (i.e., jumping from pixels;75

Figure A.1); (b) requires no dynamics randomization for sim-to-real-transfer; (c) does not assume76

fixed gait; (d) achieves the theoretical limit of jump width with fixed gaits and even wider jumps77

with variable gaits and (e) outperforms existing state-of-the-art methods (e.g., PMTG [17]). Our78

framework relies on a combination of model-free RL for high-level planning, a hybrid model-based79

low-level controller, and asymmetric behavior cloning [1, 20] that we discuss in Section 2. Imple-80

mentation details are provided in Section 3 and results in Section 5.81

2 Method Overview82

The mapping from depth images to joint torques is complex. To simplify the problem we make83

use of a hierarchical scheme where a high-level controller processes visual inputs to predict the84

desired trajectory of the robot’s body and a blind low-level controller ensures that the predicted85

trajectory is tracked. This separation eases the task for both the controllers: the high-level is shielded86

from intricacies of joint-level actuation and the low-level is not required to reason about visual87

observations. Our choice of the action space for high-level controller is guided by the intuition that88

a wide range of agile behaviors can be generated by using a variable gait schedule and commanding89

the body velocity of the quadruped. A high forward velocity results in running, whereas different90

ratios of vertical and forward velocity can control the height and the span of a jump. The variable91

gait schedule allows the robot to change when its foot contacts the ground and thus further expands92
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Figure 2: Control architecture of Jumping from Pixels and baseline.

the range of feasible contact locations and applied forces. We solve the problem of mapping depth93

observations to velocity and gait-schedule commands using model-free deep reinforcement learning.94

To ensure that the robot tracks these commands, one possibility is to simultaneously train a low-level95

controller using RL that converts the high-level velocity and gait commands into joint torques. Such96

a scheme has two drawbacks: (i) sim-to-real transfer issues discussed in Section 1 and (ii) copious97

data requirement for training. Another possibility is to leverage an analytical model of the robot98

and solve for joint torques using trajectory optimization – a scheme commonly known as whole-99

body control (WBC). Whole-body control can promote robustness by optimizing for body stability100

at high frequency [21, 22, 23, 24]. One issue, however, is that a typical WBC tracks the robot’s101

center-of-mass (CoM) [21, 22], which is infeasible during the flight phase of agile motion due to102

under-actuation of the robot’s body. To overcome this issue, we leverage a prior hybrid control103

scheme built on the intuition that the changes in body velocity can be realized by modifying the104

forces applied by the robot’s feet on the ground. This frees the controller from the requirement of105

faithfully tracking the CoM and instead tracks the contact timing and the ground forces applied by106

the feet. This approach, called whole-body impulse controller (WBIC), is well suited for highly107

dynamic motion [24].108

The velocity and gait-schedule targets for WBIC are selected in our system by a learned policy. We109

found that while it was possible to train this high-level policy from depth images, training using the110

ground truth heightmap is more sample efficient and yields higher final performance (see Section111

5.2). However, in real-world environments, such a heightmap is typically either unavailable or112

must be constructed in real-time [4], incurring latency, information loss, and engineering effort. We113

eschew heightmap construction using a two-stage asymmetric behavioral cloning [1, 20] approach,114

in which we first train an expert policy using height-map data and then distill it to a student policy115

that only uses depth images. More details are provided in Section 3.1.116

The quadruped’s whole-body state at time t is fully defined as Tt = [pb, ṗb, p̈b, pf, ṗf, p̈f,C]t ∈117

R54 × [0, 1]4 where pb = [x, y, z,α,β, γ] ∈ R6 is the robot body pose (position (x, y, z) and euler118

angles (α,β, γ)). The terms pf = [pLF
x , pLF

y , pLF
z , pRF

x , pRF
y , pRF

z , pLR
x , pLR

y pLR
z , pRR

x , pRR
y , pRR

z ] ∈ R12119

denote the position of the Right (R ), Left (L ) Front ( F) and Rear ( R) feet respectively. C =120

[�LF
C ,�RF

C ,�LR
C ,�RR

C ] ∈ [0, 1]4 is the binary contact state of each foot, with �f
C taking a value of 1 if121

foot f is in contact with the ground and a value of zero otherwise.122

3 Training the Jumping Policy123

Let the high-level policy be at = πθ(st, ot, at−1) where at is the action and st, ot denote the robot’s124

internal state and the terrain observation respectively. The action at previous time-step is fed as input125

to encourage smoothness. We use a deep neural network to represent π.126

Observation Space The proprioceptive state st ∈ R34 consists of the robot body height (R),127

orientation (R3), linear velocity (R3), and angular velocity (R3), as well as the joint positions128

(R12) and velocities (R12). The terrain observation ot is either a body-centered elevation map129

ot = Et ∈ R48×15 or a depth image ot = It ∈ R160×120 from a body-mounted camera. Ob-130

servations are normalized using the running mean and the standard deviation.131

Action Space We train policies with either fixed or variable gait patterns. With fixed gait, at ∈ R4

encodes the target body linear velocity and yaw velocity. By setting the velocity, we are essentially
modulating the target acceleration. For computational efficiency, our low-level controller assumes
that the target pitch and roll are near zero, and consequently, we exclude them from the high-level
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policy output. This assumption does not prevent our system from making agile jumps. For variable
gaits, we additionally predict the contact schedule of the legs denoted by C ∈ [0, 1]4. As an example,
the contact schedule for trot and pronk gaits corresponds to:

Ctrot =

�
[1, 0, 0, 1] t < d/2 mod d

[0, 1, 1, 0] t ≥ d/2 mod d
Cpronk =

�
[1, 1, 1, 1] t < d/2 mod d

[0, 0, 0, 0] t ≥ d/2 mod d

where d is the gait cycle duration. In our experiments with fixed gaits, we set d = 10. For variable132

gaits, the contact schedule C(at) is selected by the policy:133

Cflex =
�
[fC(at[4])] at time t

where fC maps a discrete policy output to a contact state target. There are 24 = 16 possible contact134

states for the four feet, so the associated policy output makes a new choice among 16 categories at135

each timestep in the fully gait-free case. We also train gait-free policies with fewer contact state136

options, such as the Variable Pronk which synchronizes the contacts of all feet.137

Algorithm 1 Policies Modulating
Whole-body Objectives

1: t ← 0; a−1 ← 0
2: observe s0, o0

3: while not IS-TERMINAL(st) do
4: sample at ∼ πθ(at|st, ot, at−1)
5: Tt+H ← T (at)
6: TRACK-TRAJECTORY(st, Tt:t+H)
7: t = t+ 1
8: observe st, ot

9: end while

The action at is converted into the desired whole-body
trajectory for the next H time steps denoted as

T des
t:t+H = [pb(at), ṗb(at), p̈b(at), praibert

f , ṗf
raibert, p̈f

raibert,C]

where the key quantity adapted by the policy is ṗb(at) =138

[ẋ = at[0], ẏ = at[1], ż = at[2], α̇ = 0, β̇ = 0, γ̇ =139

at[3]], from which pb(at) and p̈b(at) are fixed for dy-140

namic consistency. praibert
f , ṗf

raibert, p̈f
raibert are foot targets141

satisfying the Raibert Heuristic (see supplement).142

Whole-body Trajectory Tracking is performed using143

the hybrid control scheme described in [24]. It is a144

high-frequency controller that solves a quadratic program145

(QP): qdes = QP(Tdes, T ) without access to terrain information. It is composed of three controllers146

operating hierarchically:147

• A Model Predictive Controller (MPC) converts the future whole-body trajectory Tt:t+H into target148

ground reaction forces ft:t+H at contact for every foot at each timestep. MPC operates at 40 Hz.149

• A Whole-Body Impulse Controller (WBIC) finds the target position, velocity, and feedforward150

torque commands for all joints required to track the current step of the the whole-body trajectory151

Tt and desired ground reaction forces ft computed by the MPC. WBIC operates at 500 Hz.152

• A Proportional-Derivative Plus Feedforward Torque Controller takes as input a target position,153

target velocity, and feedforward torque command for each of the robot joints, as well as an ob-154

servation of each joint’s current position and velocity. It computes and actuates a resulting output155

torque for each motor at 40 kHz.156

Rollout Procedure The iterative execution routine for our model-free planner and model-based157

controller is given by Algorithm 1. The low-level controller performs receding-horizon optimization158

of contact forces over horizon H , with the assumption that the future contact and pose targets taken159

into account for planning will not change. This motivates our design choice in the high-level policy160

to select the trajectory target H timesteps into the future. In our experiments, H = 10, the policy161

timestep is 0.036s, and the low-level controller timestep is 0.002s.162

Reward Function The reward rt at time t is defined as:163

rt =c1(p
b
t,x − pbt−1,x)− c2 max(0, ||vbt ||2 − Vthresh)− c3|αb

t |− c4|βb
t |− c5|γb

t |− c6|q̇|

The first term rewards the forward progress pbt,x − pbt−1,x, where pbt,x is the projection of the164

body frame position at time t onto the x-axis in the world frame. The second term applies a165

soft safety constraint by penalizing when the body velocity vbt exceeds Vthresh. The third, fourth,166

and fifth terms incentivize stability by penalizing the roll, pitch, and yaw of the body, denoted167

as αb
t ,β

b
t . The sixth term rewards smooth motion by penalizing the joint velocity q̇; in train-168

ing with adaptive contact schedule, we found this term critical to promote exploration of lower-169

frequency gaits. c1, c2, c3, c4, c5, c6 are the coefficients of each reward term. In our experiments,170

c1 = 1.0, c2 = 0.5, c3 = 0.02, c4 = 0.05, c5 = 0.15, c6 = 0.03, Vthresh = 1.0m/s.171
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3.1 Neural Network Training172

Network Architecture The policy πθ(at|st, ot, at−1) is modeled using a deep recurrent neural173

network that includes a convolutional neural network (CNN) to process the high-dimensional terrain174

observation ot. The output features of the perception module are concatenated with proprioceptive175

inputs st, previous action at−1, and a cyclic timing parameter [17] and passed through a sequence of176

fully connected layers to output a probability distribution over the next action at. Figure 3 illustrates177

the architecture of the policy or actor network; during training, we also use a critic network, in which178

the final layer of the actor is replaced by a value prediction head.179
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Figure 3: High-level gait prediction network

Initialization and Termination For each180

training episode, the robot is initialized in a181

standing pose on flat ground. The locations182

of gaps and their widths are randomized. An183

episode terminates if any of three terminal con-184

ditions are met: (1) the body height is less than185

20 centimeters; (2) body roll or pitch exceeds186

0.7 radians; or (3) a foot is placed in a gap. The187

maximum episode length is 500 steps, equiva-188

lent to 25 seconds of simulated locomotion.189

Policy Optimization The parameters of the neural network (θ) are optimized using Proximal Policy190

Optimization (PPO) [25]. We use Adam optimizer [26] with learning rate 0.0003 and batch size 256.191

During training, 32 environments are simulated in parallel. We find that policies converge within192

6000 training episodes, equivalent to 60 hours of simulated locomotion or 12 hours of computation.193

Asymmetric-Information Behavioral Cloning Learning directly from depth images is challeng-194

ing because a front-facing depth camera can only provide information about the terrain in front of195

the robot, not the terrain underneath its feet, making the contact-relevant terrain partially observed.196

Furthermore, the depth image is dependent on the robot egomotion as well as the terrain shape, in-197

troducing noise. To address the challenge of learning a policy from the noisy, partial observations198

provided by a body-mounted depth camera, we use a two-stage approach that first trains an expert199

policy (πE) from ground truth height map. A second deployable policy (πBC) is trained from depth200

inputs to mimic the expert policy. For this, we use a variant of Behavioral Cloning (BC) known201

as DAgger [27] to minimize the KL-divergence between the output action distribution of the imi-202

tating agent πBC(a|s) and the expert πE(a|s): minDKL

�
πE(a|s)||πBC(a|s)

�
. Because the depth203

images in our setup contain only a portion of the information in the heightmaps, it is necessary to204

integrate depth data over time. Therefore, we represent πBC as a recurrent neural network. Prior205

works have applied similar approaches to blind rough-terrain locomotion [1] and autonomous driv-206

ing [20]. Evaluation reported in Table 1 indicates that this cloned policy matches the performance207

of the expert trained from heightmaps, and substantially outperforms learning directly from depth208

images.209

4 Experimental Setup210

Hardware: We use the MIT Mini-Cheetah [19] , a 9kg electrically-actuated quadruped that stands211

28cm tall with a body length of 38cm. A front-mounted Intel RealSense D435 camera provides212

real-time stereo depth data. The robot is also equipped with an onboard computer [7] that supports213

a hierarchical trajectory-tracking controller described in Section 2. Data from the depth camera is214

processed by an offboard computer that communicates the output of the high-level policy to the robot215

via an Ethernet cable. Treating proprioceptive state estimation as an orthogonal research direction to216

our work, we use a motion capture system to obtain accurate measurements of the robot body state.217

Simulator: We trained our vision-conditioned policy using the PyBullet [28] simulator. In addition218

to simulating the robot dynamics, PyBullet simulates the frames of our mounted depth camera, cali-219

brated from an accurate CAD model of our robot and from the sensor’s known intrinsic parameters.220

Gap World Environment: To evaluate the ability of our system to dynamically traverse discon-221

tinuous terrains, we define a test environment consisting of variable-width gaps and flat regions.222

The difficulty of traversing gap worlds depends on the proximity of gaps as well as gap width, with223

closer and wider gaps presenting a greater challenge to the controller. Our training dataset consists224
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Figure 4: (a):Performance comparison for blind and visually guided policies. Shaded regions indi-
cate standard error. Ideal performance is derived from maximum stride length given velocity, foot
placement, and contact schedule constraints. Note that while the theoretical limits are derived as-
suming zero yaw, the learned trotting controller learns to move with nonzero yaw, thus extending the
foot placements further apart and beating the ideal. (b) A comparison of performance among poli-
cies trained with fixed contact schedule and adaptive contact schedule demonstrates the flexibility
and dynamic range of our method.
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Figure 5: Adaptive contact schedule generated by our policy. Given a terrain observation (top), the
policy modulates the body velocity (middle) and contact duration (bottom) to traverse 30cm gaps.

of randomly generated gaps with uniform random width between Wmin = 4 and Wmax centimeters,225

separated by flat segments of randomized width 0.5 to 2.0 meters. Our test dataset contains novel226

terrains drawn from the same distribution.227

Policies Modulating Trajectory Generators (PMTG) [17] Baseline augments the action space228

of model-free RL using a parametric trajectory generator (TG) capable of producing cyclic leg229

motions. Given a timing parameter (t) that cycles between 0 and 1 and trajectory parameters (a)230

– stride frequency, length etc., TG outputs joint position targets qdes = TG(t, a). The policy also231

directly predicts residuals (Δqdes). The output command is therefore qdes +Δqdes.232

5 Results233

5.1 Dynamic Performance234

By design, learning with a trajectory generator introduces constraints and biases into the resulting235

policies. This aids learning and enables robust behavior. However, this yields a concern: are the236

constraints and biases of the trajectory generator too rigid to accommodate useful locomotion strate-237

gies? Or do they serve to guide learning effectively without hindering final performance? Our results238

indicate the latter. In this section, we evaluate the flexibility and performance of our integrated per-239

ception and control approach. We find that our system is both high-performing under constraints240

and flexible when constraints are removed.241

Optimality Under Constraints We train our framework to cross gaps up to the theoretical limit for242

constrained families of trotting and pronking gaits. Figure 4a reports the performance of our method243

for adaptive fixed-gait gap crossing in simulation. While the baseline fixed gaits without vision are244

capable of sometimes crossing gaps by chance, our visually-guided approach succeeds at above 90%245

of gap crossing attempts up to the theoretical limits derived in the supplementary material.246

Unconstrained Range of Motion We relax all constraints on contact schedule and train a controller247

with a vision-adaptive contact schedule to cross wide gaps. Figure 4b reports the performance of248

our method for gait-adaptive gap crossing in simulation. When trained with extremely wide (40-249
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Table 1: Gap crossing success rate for RL policies (with Trotting (T), Pronking (P), or Variable-
Timing Pronking (VP)) trained on various maximum gap widths with with height maps, depth im-
ages as input respectively, and the policy produced by behavioral cloning with and without recurrent
architecture. For model trained with maximum gap width Wmax, the evaluated gap width is Wmax−5.
Input T, 10cm T, 20cm P, 20cm P, 30cm VP, 30cm
Heightmap (MLP) 1.0 1.0 1.0 0.7 1.0
Depth Image (RNN) 0.6 0.3 0.9 0.9 0.7
Heightmap (MLP) → Depth Image (MLP) 1.0 0.9 0.1 0.0 0.0
Heightmap (MLP) → Depth Image (RNN) 1.0 1.0 1.0 0.4 1.0

to 70-cm gaps), the visually informed policy learns to select a variable-bounding contact schedule250

which achieves superior performance to trotting and pronking for very large gaps. However, we note251

that the low-level controller may truly not support the motions generated in simulation for crossing252

such large gaps. When we restrict the maximum gap size to 40cm or less, a variable-timing pronking253

gait emerges in the gait-free controller. Figure 5 illustrates the variable contact timings and velocity254

modulation of the variable pronking controller in simulation.255

Ease of Training Our method is capable of learning successful policies for multiple gaits and gap-256

world parameters with no specialized modification. In contrast, we found that the PMTG baseline257

was highly sensitive to the tuning of the reward and trajectory generator. We first tuned the trajec-258

tory generator, residual magnitudes, and reward function of PMTG for forward locomotion on flat259

ground; details and videos of the baseline can be found in the supplementary material. We found260

that these tuned parameters on flat ground were overly conservative for gap crossing tasks. How-261

ever, an action space with large residuals can significantly override the predefined motion primitives,262

presenting an obstacle to learning realistic gap-crossing behaviors without any curriculum or spe-263

cialized reward design [8]. Indeed, without any such special inclusions in our training, the baseline264

failed to learn any gap-crossing behavior when the maximum gap width Wmax exceeded 15cm for265

trotting or 25cm for pronking as well as when gap separation was reduced to 0.5m in simulation.266

5.2 Vision and Behavioral Cloning267

Performance Table 1 illustrates that behavioral cloning offers an advantage over learning directly268

from depth images in many but not all cases. We find that learning from heightmaps + BC consis-269

tently achieves higher reward than learning directly from depth images. These results also demon-270

strate that the combination of behavioral cloning with a variable gait schedule is beneficial, with the271

cloned Variable Pronk achieving the highest performance for wide gaps of any depth-image policy.272

Recurrent Architecture We ablate the recurrent architecture of the cloned policy, and note that273

policies with recurrent architecture consistently yield higher final performance than without, par-274

ticularly for environments with larger gaps which require more dynamic motion (Table ??). This275

suggests that the hidden state is helpful in forming a useful representation of unobserved terrain276

regions given the observation history.277
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Figure 6: Motion capture data verifies the transfer of planned trajectories to the hardware system.
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5.3 Sim-to-Real Transfer278

We deploy vision-adaptive locomotion controllers trained with Jumping from Pixels on the MIT279

Mini Cheetah robot [19]. Figure 6 plots motion capture data from four deployments of the adaptive280

trotting controller (left) and three deployments of the adaptive pronking controller (right) using281

ground-truth state information and heightmap input. The relevant cross-section of the terrain surface282

is drawn in dark green. The consistency of foot placements and visible adaptive avoidance of the283

gap verify that our method trained in simulation produces terrain-appropriate behaviors which can284

cross the sim-to-real gap. Further, we successfully deploy student policies in fully real-time fashion,285

directly making use of depth images and an onboard state estimator. We report and analyze these286

results at https://sites.google.com/view/jumpingfrompixels.287

6 Related Work288

Model-free RL for locomotion is shown to benefit from acting over low-level control loops rather289

than raw commands [29]. Previous work in simulation [11, 13, 9] has applied model-free rein-290

forcement learning to traversal of discontinuous terrains in simulation. [9] notably applied model-291

free RL to the problem of crossing stepping stones with physically simulated characters, but this292

method did not use realistic perception or take measures to promote sim-to-real transfer. Recent293

work on ANYmal [30] learns a model-free policy to predict joint position targets for a PD con-294

troller, and demonstrates better energy efficiency and higher maximum velocity than comparable295

model-optimization-based controllers. However, joint-space policies learned in simulation can still296

be unrobust and fail to cross the sim-to-real gap. Reward shaping, system identification, and domain297

randomization were used in [30] to facilitate transfer to the real robot.298

Model-based control for locomotion has achieved highly dynamic blind walking [31], running299

[24], and jumping over obstacles [15] using known quadruped whole-body and centroidal dynamics.300

Other works have applied model-based control to terrain-aware navigation of a mapped environment,301

typically with complete information about the terrain [4, 32]. In general, control strategies based on302

known models are high-performing and robust where the state is known and the model is sufficiently303

accurate. In contrast, model-free controllers excel at incorporating unstructured or partially observed304

state information when large data is available.305

Interfacing Model-based and Model-Free Methods. A previous line of work has leveraged306

model-free perception for foothold selection. [33] locally adapted foot placements to safe footholds307

predicted by a CNN. RLOC [6] similarly uses a learning-based online footstep planner in combina-308

tion with a learning-modulated whole-body controller to perform terrain-aware locomotion. Unlike309

our method, [6] uses a complete terrain heightmap as observation, plans by targeting foot place-310

ments, and is limited to relatively conservative fixed walking and slow trotting gaits. On the other311

hand, concurrent work applies RL to modulate a model-based controller’s target command without312

perception. [34, 35] demonstrated that using a model-free policy to choose contact schedules for a313

reduced-order model leads to the emergence of efficient gait transitions during blind flat-ground lo-314

comotion. [36] demonstrates the integration of a model-free high-level controller with a centroidal315

dynamics model. This framework deployed with a fixed trotting gait is demonstrated to achieve316

flat-ground and conservative terrain-aware locomotion. Unlike our work, [36] does not demonstrate317

gaits with flight phases or plan from realistic terrain observations.318

7 Conclusion and Discussion319

We have presented a vision-based hierarchical control framework capable of traversing discontinu-320

ous terrain with gaps. The combination of model-free high-level trajectory prediction and model-321

based low-level trajectory tracking enables us to simultaneously achieve high performance and ro-322

bustness. Consequently, we demonstrate that the learnt behaviors cross the sim-to-real gap.323

One aspect that prevents in-the-wild deployment is that the readings of onboard sensors for esti-324

mating the robot’s internal state are noisy and insufficient to plan high-precision foot placement for325

crossing gaps. To focus on transfer of visual inputs and dynamic control in this work, we made use326

of a motion capture system to measure the robot’s state. We believe that improving on-board state327

estimation by leveraging vision is a worthwhile, but a complementary direction of future research.328
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